OKLAHOMASTATEUNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems Spring 2008
 Midterm Exam \#1

Do All Five Problems

Name : \qquad

E-Mail Address:

Problem 1:

A system has zero-state response

$$
y(t)=f\{u(t)\}=\int_{-\infty}^{\infty}(\tau-t)^{3} u(\tau) 1(t-\tau-1) d \tau
$$

where the unit-step function $1(\lambda)$ is defined by

$$
1(\lambda-a)=\left\{\begin{array}{l}
0, \text { for } \lambda<a \\
1, \text { for } \lambda \geq \mathrm{a}
\end{array} .\right.
$$

Determine whether this system is or is not a) causal, b) time-varying, c) zero-memory and d) zero-state linear. Please justify your answer.

Problem 2:

Suppose we have a state-space realization given by A, b, c with the three chosen state variables $x=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$. Suppose we are now interested in the state variables $z=\left[\begin{array}{lll}z_{1} & z_{2} & z_{3}\end{array}\right]^{T}$, where $z_{1}=k_{1} x_{1}, z_{2}=k_{2} x_{2}$, and $z_{3}=k_{3} x_{3}$, and we let $\dot{z}=F z+g u, y=h z$.
a) Write out the matrices F, g, h in terms of the elements of A, b, c and the scale factors k_{1}, k_{2}, k_{3}.
b) Suppose we wish to change the time scale and substitute $\tau=a_{0} t$ into the equations. Repeat part a), showing how F, g, h depend on the time scale factor a_{0} and the elements of A, b, c.

Problem 3:

Find an observable canonical form realization (in minimal order) from SISO continuous-time system given below:

$$
t^{2} \ddot{y}(t)+(t-1) \dot{y}(t)+e^{-2 t} y(t)=4 \ddot{u}(t)+3 t \dot{u}(t)-t^{2} u(t) .
$$

Notice that gain blocks may be time dependent. Show the state space representation and its corresponding simulation diagram.

Problem 4:

Find a minimal observable canonical form realization (i.e., its simulation diagram and state space representation) for the following MISO system described by

$$
H(s)=\left[\begin{array}{ll}
\frac{2 s+3}{s^{3}+4 s^{2}+5 s+2} & \frac{s^{2}+2 s+2}{s^{4}+3 s^{3}+3 s^{2}+s}
\end{array}\right]
$$

Problem 5:

If $\{A, B, C, D\}, D$ nonsingular, is a realization with $H(s)=C(s I-A)^{-1} B+D$, show that $\left\{A-B D^{-1} C, B D^{-1},-D^{-1} C, D^{-1}\right\}$ is a realization for a multi-input multi-output system with transfer function $1 / H(s)$.

